School of Pharmaceutical Sciences, Peking University

Independent research

25.​ Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging

Yue Yan+, Binlong Chen+, Qingqing Yin, Zenghui Wang, Ye Yang, Fangjie Wan, Yaoqi Wang, Mingmei Tang, Heming Xia, Meifang Chen, Jianxiong Liu, Siling Wang, Qiang Zhang and Yiguang Wang*

Nature Communications. 2022, ​13, 2004.

DOI: 10.1038/s41467-022-29679-6


24.​ A pH-/Enzyme-Responsive Nanoparticle Selectively Targets Endosomal Toll-like Receptors to Potentiate Robust Cancer Vaccination

Heming Xia+, Mengmeng Qin+, Zenghui Wang, Yaoqi Wang, Binlong Chen, Fangjie Wan, Mingmei Tang, Xingquan Pan, Ye Yang, Jianxiong Liu, Ruiyang Zhao, Qiang Zhang and Yiguang Wang*

Nano Letters. 2022, 22, 2978-2987.

DOI: 10.1021/acs.nanolett.2c00185


23.​ A pH-Responsive Nanoparticle Library with Precise pH Tunability by Co-Polymerization with Non-Ionizable Monomers

Ruiyang Zhao+, Chuanxun Fu+, Zenghui Wang, Meijie Pan, Bin Ma, Qingqing Yin, Binlong Chen, Jianxiong Liu, Heming Xia, Fangjie Wan, Letong Wang, Qiang Zhang and Yiguang Wang*

Angewandte Chemie International Edition. 2022, 61, e202200152.

DOI: 10.1002/anie.202200152.


22.​ A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging

Jingming Zhang, Anastasia Rakhimbekova, Xiaojiang Duan, Qingqing Yin, Catherine A. Foss, Yan Fan, Yangyang Xu, Xuesong Li, Xuekang Cai, Zsofia Kutil, Pengyuan Wang, Zhi Yang, Ning Zhang, Martin G. Pomper, Yiguang Wang*, Cyril Bařinka* & Xing Yang*

Nature communications. 2021, 12, 5460.

DOI: 10.1038/s41467-021-25746-6.


21.​ Cooperative Self-Assembled Nanoparticle Induces Sequential Immunogenic Cell Death and Toll-Like Receptor Activation for Synergistic Chemo-immunotherapy

Yaoqi Wang, Zenghui Wang, Binlong Chen, Qingqing Yin, Meijie Pan, Heming Xia, Bo Zhang, Yue Yan, Zhujun Jiang, Qiang Zhang, Yiguang Wang*

Nano Letters. 2021, 21, 4371-4380.

DOI: 10.1002/acs.nanolett.1c00977.


20.​ Quantitative Imaging of Intracellular Nanoparticle Exposure Enables Prediction of Nanotherapeutic Efficacy

Qingqing Yin, Anni Pan, Binlong Chen, Zenghui Wang, Mingmei Tang, Yue Yan, Yaoqi Wang, Heming Xia, Wei Chen, Hongliang Du, Meifang Chen, Chuanxun Fu, Yanni Wang, Xia Yuan, Zhihao Lu, Yiguang Wang*

Nature Communications. 2021, 12, 2358.

DOI: 10.1038/s41467-021-22678-z.


19. pH-Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes

Zenghui Wang, Heming Xia, Binlong Chen, Yaoqi Wang, Qingqing yin, Yue Yan, Ye Yang, Mingmei Tang, Jianxiong Liu, Ruiyang Zhao, Wenzhe Li, Qiang Zhang, Yiguang Wang*

Angewandte Chemie International Edition. 2021, 133, 14633-14641.

DOI: 10.1002/anie.202102044.


18. Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors

Binlong Chen, Ye Yang, Yaoqi Wang, Yue Yan, Zenghui Wang, Qingqing Yin, Qiang Zhang, Yiguang Wang*

ACS Applied Materials & Interfaces. 2021, 13, 16, 18533-18544.

DOI: 10.1002/acsami.1c01730.


17. Sequential Modulations of Tumor Vasculature and Stromal Barriers Augment the Active Targeting Efficacy of Antibody‐Modified Nanophotosensitizer in Desmoplastic Ovarian Carcinoma

Yue Yan, Binlong Chen, Zenghui Wang, Qingqing Yin, Yaoqi Wang, Fangjie Wan, Yulin Mo, Bo Xu, Qiang Zhang, Siling Wang*, Yiguang Wang*

Advanced Science. 2020, 2002253.

DOI: 10.1002/advs.202002253.


16. pH/Cathepsin B Hierarchical-Responsive Nanoconjugates for Enhanced Tumor Penetration and Chemo-Immunotherapy

Hongliang Du, Sui Zhao, Yaoqi Wang, Zenghui Wang, Binlong Chen, Yue Yan, Qingqing Yin, Dechun Liu, Fangjie Wan, Qiang Zhang, and Yiguang Wang*

Advanced Functional Materials.2020, 30, 2003757

DOI: 10.1002/adfm.202003757


15. Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway

Dechun Liu, Binlong Chen, Yulin Mo, Zenghui Wang, Tong Qi, Qiang Zhang, and Yiguang Wang*

Nano Letters.2019, 19, 10, 6964-6976



14. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy

Tong Qi, Binlong Chen, Zenghui Wang, Hongliang Du, Dechun Liu, Qingqing Yin, Bangyuan Liu, Qiang Zhang, Yiguang Wang∗

Biomaterials. 2019, 213, 119219



13. Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy

Yulin Mo, Hongliang Du, Binlong Chen, Dechun Liu, Qingqing Yin, Yue Yan, Zenghui Wang, Fangjie Wan, Tong Qi, Yaoqi Wang, Qiang Zhang, and Yiguang Wang*

ACS Biomaterials Science &Engineering. 2019, 5, 5,2316-22329



12. Ultra-pH-sensitive indocyanine green-conjugated nanoprobes for fluorescence imaging-guided photothermal cancer therapy

Zhen Li, Qingqing Yin, Binlong Chen, Zenghui Wang, Yue Yan, Tong Qi, Wei Chen, Qiang Zhang,  Yiguang Wang*

Nanomedicine: Nanotechnology, Biology and Medicine. 2019, 17, 287-296



11. Localized co-delivery of collagenase and trastuzumab by thermosensitive hydrogels for enhanced antitumor efficacy in human breast xenograft

Anni Pan, Zhaoyang Wang, Binlong Chen, Wenbing Dai, Hua Zhang, Bing He, Xueqing Wang, Yiguang Wang*and Qiang Zhang*

Drug Delivery. 2018, 25, 1, 1495-1503



10. Digitization of Endocytic pH by Hybrid Ultra-pH-Sensitive Nanoprobes at Single-Organelle Resolution

Yiguang Wang*, Chensu Wang, Yang Li, Gang Huang, Tian Zhao, Xinpeng Ma,  Zhaohui Wang, Baran D. Sumer, Michael A. White, and Jinming Gao*(* Corresponding author)

Advanced Materials. 2017, 29, 1603794



9. Cooperativity Principles in Self-Assembled Nanomedicine

Yang Li, Yiguang Wang, Gang Huang, and Jinming Gao*

Chemical Reviews. 2018, 118, 11, 5359–5391


8. Proteomic Analysis of Intracellular Protein Corona of Nanoparticles Elucidates Nano-trafficking Network and Nano-bio Interactions. 

Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q*. 

Theranostics. 2020, 10: 1213-1229.

7. Recent progress in drug delivery

Li C, Wang J*, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y.

Acta Pharmaceutica Sinica B. 2019, 9: 1145-1162.


Intestinal Mucin Induces More Endocytosis but Less Transcytosis of Nanoparticles across Enterocytes by Triggering Nanoclustering and Strengthening the Retrograde Pathway.

Yang D, Liu D, Qin M, Chen B, Song S, Dai W, Zhang H, Wang X, Wang Y, He B, Tang X, Zhang Q*.

ACS Applied Materials & Interfaces. 2018, 10: 11443-11456.

5. Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy

Li P, Yan Y, Chen B, Zhang P, Wang S, Zhou J, Fan H*, Wang Y*, Huang X*.

Biomaterials Science. 2018, 6: 877-884.


Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages.

He B, Shi Y, Liang Y, Yang A, Fan Z, Yuan L, Zou X, Chang X, Zhang H, Wang X, Dai W, Wang Y, Zhang Q*.

Nature Communications. 2018, 9: 2393.


Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q*.

Theranostics. 2017, 7: 538-558.


A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both αvβ3 Targeting and Reduction-Triggered Release for Maytansinoid.

Liang Y, Li S, Wang X, He B, He B, Dai W, Zhang H, Wang X, Wang Y, Zhou D, Zhang Q*.

Theranostics. 2017, 7: 3306-3318.


Anisotropy in Shape and Ligand-Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome.

Wang X, Lin L, Liu R, Chen M, Chen B, He B, He B, Liang X, Dai W, Zhang H, Wang X, Wang Y, Dai Z*, Zhang Q*.

Advanced Functional Materials. 2017, 27: 1700406.

Post-doctoral and graduate research

27. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals

YiguangWang, Kejin Zhou, Gang Huang, Christopher Hensley, Xiaonan Huang, Xinpeng Ma, Tian Zhao, Baran D. Sumer, Ralph J. DeBerardinis and Jinming Gao*

Nature Materials. 2014, 13, 204-212



26. Ultra-pH-Sensitive Nanoprobe Library with Broad pH Tunability and Fluorescence Emissions

Xinpeng Ma, Yiguang Wang, Tian Zhao, Yang Li, Lee-Chun Su, Zhaohui Wang, Gang Huang, Baran D. Sumer, and Jinming Gao* (, equal contribution)

Journal of  the American Chemical Society. 2014, 136, 31, 11085-11092



25. Tunable, Ultrasensitive pH‐Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells

Kejin Zhou, Yiguang Wang, Xiaonan Huang, Katherine Luby-Phelps, Baran D. Sumer, and Jinming Gao* (, equal contribution)

Angewandte Chemie International Edition. 2011, 50, 6109-6114



24. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles.

Wang C, Wang Y, Li Y, Bodemann B, Zhao T, Ma X, Huang G, Hu Z, DeBerardinis RJ, White MA*, Gao J*.

Nature Communications. 2015, 6: 8524.



23. A transistor-like pH nanoprobe for tumour detection and image-guided surgery.

Zhao T, Huang G, Li Y, Ramezani S, Yang S, Lin Z, Wang Y, Ma X, Zeng Z, Xie XJ, Thibodeaux J, Sun X, Sumer BD*, Gao J*.

Nature Biomedical Engineering. 2016, 1: 0006.

22. Lysosome-Oriented, Dual Stages pH-Responsive Polymeric Micelles for β-Lapachone Delivery. 

Zhou Y, Dong Y, Huang G, Wang Y, Huang X, Zhang F, Boothman DA, Gao J, Liang W. 

Journal of Materials Chemistry B. 2016, 4: 7429.

21. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. 

Dutchak PA, Laxman S, Estill SJ, Wang C, Wang Y, Wang Y, Bulut GB, Gao J, Huang LJ, Tu BP*. 

Cell Reports. 2015, 12: 371-379.

20. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. 

Ma X, Huang X, Moore Z, Huang G, Kilgore JA, Wang Y, Hammer S, Williams NS, Boothman DA, Gao J. 

Journal of Controlled Release. 2015, 200: 201-211.

19. Chaotropic-Anion-Induced Supramolecular Self-Assembly of Ionic Polymeric Micelles.

Li Y, Wang Y, Huang G, Ma X, Zhao T and Gao J*.

Angewandte Chemie International Edition. 2014, 53: 8074-8078.

18. In Vivo Optical Imaging of Folate Receptor-β in Head and Neck Squamous Cell Carcinoma.

Sun JY, Shen J, Thibodeaux J, Huang G, Wang Y, Gao J, Low PS, Dimitrov DS, Sumer BD*.

Laryngoscope. 2014, 124: E312-9.

17. Prodrug Strategy to Achieve Lyophilizable, High Drug Loading Micelle Formulations through Diester Derivatives of β-Lapachone.

Ma X, Huang X, Huang G, Li L, Wang Y, Luo X, Boothman DA, Gao J*.

Advanced Healthcare Materials. 2014, 3: 1210-1216.

16. Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors.

Qin L, Zhang F, Lu X, Wei X, Wang J, Fang X, Si D, Wang Y, Zhang C, Yang R, Liu C, Liang W.

Journal of Controlled Release. 2013, 171: 133-42.

15. Multi-Chromatic pH-Activatable19F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes.

Huang X, Huang G, Zhang S, Sagiyama K, Togao O, Ma X, Wang Y, Li Y, Soesbe TC, Sumer BD, Takahashi M, Sherry AD, Gao J.

Angewandte Chemie International Edition. 2013, 52: 8074-8078.

14. Delivery of Drugs into Cell Membrane by Encapsulation in PEG-PE Micelles.

Wang J, Wang Y, Liang W*.

Journal of Controlled Release. 2012, 160: 637-651.

13. An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis.

Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS, Patel M, Parkinson EI, Wang Y, Williams NS, Gao J, Hergenrother PJ, Boothman DA.

Cancer Research. 2012, 72: 3038-3047.

12. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli.

Zhou K, Liu H, Zhang S, Huang X, Wang Y, Huang G, Sumer BD, Gao J*.

Journal of the American Chemical Society. 2012, 134: 7803-7811.

11. Peptide PHSCNK as an integrin α5β1 antagonist targets stealth liposomes to integrin-overexpressing melanoma.

Dai W, Yang T, Wang Y, Wang X, Wang JC, Zhang X, Zhang Q.

Nanomedicine: Nanotechnology, Biology and Medicine. 2012, 8: 1152-1161.

10. Stability Influences the Biodistribution, Toxicity and Anti-tumor Activity of Doxorubicin Encapsulated in PEG-PE Micelles in Mice.

Wei X†, Wang Y†, Zeng W, Huang F, Qin L, Zhang C, Liang W*.

Pharmaceutical Research. 2012, 29: 1977-1989.

9. Targeted delivery of a combination therapy consisting of combretastatin A4 and low-dose doxorubicin against tumor neovasculature.

Yang T†, Wang Y†, Zaiquan Li†, Dai W, Yin J, Liang L, Wang JC, Zhang X, Ying X, Zhang Q*.

Nanomedicine: Nanotechnology, Biology and Medicine. 2012, 8: 81-92.

8. Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system.

Wang Y†, Yang T†, Wang X, Dai W, Wang JC, Zhang X, Li Z, Zhang Q*.

Journal of Controlled Release. 2011, 149: 299-306.

7. Overcoming Endosomal Barrier by Amphotericin B-loaded Dual pH-Responsive PDMA-b-PDPA Micelleplexes for siRNA Delivery.

Yu H, Zou Y, Wang Y, Huang X, Huang G, Sumer BD, Boothman DA, Gao J*.

ACS Nano. 2011, 5: 9246-9255.

5. Targeted Polymeric Micelle System for Delivery of Combretastatin A4 to Tumor Vasculature in Vitro.

Wang Y†, Yang T†, Wang X, Dai W, Wang JC, Zhang X, Zhang Q*.

Pharmaceutical Research. 2010, 27: 1861-1868.

4. Pegylated Phospholipids Based Self-Assembly with Water-soluble Drugs.

Wang Y, Wang R, Lu X, Wang J, Zhang C, Liang W*.

Pharmaceutical Research. 2010, 27: 361-370.

3. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side-effects.

Wang Y, Wei W, Zhang C, Zhang F, Liang W*.

Therapeutic Delivery. 2010, 1: 273-287.

2. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells.

Wang Y, Wang X, Zhang Y, Yang S, Wang JC, Zhang X, Zhang Q*.

Journal of Drug Targeting. 2009, 17: 459-67.

1. NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells.

Wang X, Wang Y, Chen X, Wang JC, Zhang X, Zhang Q*.

Journal of Controlled Release. 2009, 139: 56-62.